精品与欧美交牲久久久久,精品亚洲五月天一区二区,亚洲熟伦熟女专区hd高清 ,中文字幕免费在线看成人

The principle of UWB wireless ranging module of robot is explained in detail

2025-02-11 160

In today's robotics field, high-precision positioning and ranging technology plays a vital role in the core functions of robot navigation, obstacle avoidance, path planning and so on. Ultra-Wideband (UWB) wireless ranging module, as a new high precision ranging technology, is gradually becoming a research hotspot in the field of robotics because of its unique performance advantages. This paper will elaborate the principle of UWB wireless ranging module in order to provide readers with in-depth understanding and understanding.

UWB飛睿智能

I. Overview of UWB technology


UWB technology is a kind of wireless carrier communication technology which transmits data by nanosecond non-sinusoidal narrow pulse. Compared with the traditional wireless communication technology, UWB technology has the advantages of wide band width, high transmission rate, strong anti-interference ability and strong multi-path resolution. It typically operates in a frequency band between 3.1GHz and 10.6GHz, with a typical bandwidth of 500MHz or higher, which gives UWB signals high resolution in the time domain and can be accurate to the nanosecond level. Therefore, UWB technology is well suited for high-precision ranging and positioning.


Two, UWB wireless ranging module principle


The UWB wireless ranging module utilizes the Time of Flight (ToF) principle. Specifically, the distance between the two devices is calculated by measuring the time it takes the UWB signal to travel in space, combined with the speed of light constant c. The following will introduce the working principle of UWB wireless ranging module in detail.


Single Side two-way Ranging (SS-TWR)

Unilateral two-way ranging is a simple ranging method, its basic principle is as follows:


(1) Device A (range initiator) at a certain time Ta1 transmits a UWB pulse signal of the nature of the request;

(2) Equipment B (ranging responder) receives the signal at a certain time Tb1 and processes it to a certain extent;

(3) Device B emits a responsive UWB pulse signal from Tb2 at a certain time after processing;

(4) Device A receives the response signal transmitted by device B at a certain time by Ta2.


According to the above steps, we can get two time differences: ΔTa=Ta2-Ta1 and ΔTb=Tb2-Tb1. Since the signal travel time between device A and device B is the same, the time of flight of the signal between the two devices ToFA_B=(ΔTa+ΔTb)/2 can be calculated. According to the time of flight ToFA_B and the speed of light c, the distance between device A and device B can be calculated D=c×ToFA_B.


However, there is A potential problem with the unilateral bidirectional ranging method, that is, there may be a certain offset of the clock between device A and device B. This can lead to errors in the measurement results. To solve this problem, the two-sided bidirectional ranging method (DS-TWR) can be used.


Bilateral Two-way Ranging (DS-TWR)

Bilateral bidirectional ranging method is improved on the basis of unilateral bidirectional ranging, its basic principle is as follows:


(1) Device A at a certain time Ta1 transmits a UWB pulse signal of the nature of the request;

(2) Equipment B receives the signal at a certain time Tb1 and processes it to some extent;

(3) At a certain time after the processing of device B, Tb2 simultaneously transmits a UWB pulse signal of response nature and request nature;

(4) Device A receives the response signal transmitted by device B at a certain time, and Ta3 transmits a response UWB pulse signal at a certain time after processing;

(5) Device B receives the response signal transmitted by device A at a certain time Tb3.


According to the above steps, we can get four time differences: ΔTa1=Ta2-Ta1, ΔTb1=Tb2-Tb1, ΔTa2=Ta3-Ta2, and ΔTb2=Tb3-Tb2. From these four time differences, we can calculate the flight time of the signal between the two devices ToFA_B and ToFB_A. Then take the average of the two as the final flight time ToF=(ToFA_B+ToFB_A)/2. Based on the time of flight ToF and the speed of light c, the distance between device A and device B can be calculated D=c×ToF.


By the method of reverse measurement compensation, the influence of clock deviation on measurement results is effectively reduced and the ranging accuracy is improved.


Third, the application of UWB wireless ranging module in the field of robotics


UWB wireless ranging module has a wide application prospect in the field of robotics. For example, in driverless cars, the UWB wireless ranging module can be used to achieve high-precision positioning and obstacle avoidance. In the logistics robot, it can be used to realize the accurate handling and stacking of goods; In the inspection robot, it can be used to realize the accurate recognition and positioning of the target object. In addition, the UWB wireless ranging module can also be integrated with other sensors (such as lidar, cameras, etc.) to further improve the perception ability and intelligence level of the robot.


Iv. Conclusion


UWB wireless ranging module, as a new high precision ranging technology, has a wide application prospect in the field of robotics. This paper introduces the working principle and application scenario of UWB wireless ranging module in detail, hoping to provide readers with in-depth understanding and understanding. With the continuous development and improvement of technology, it is believed that UWB wireless ranging module will play a more important role in the future robot field.


国产调教性奴在线观看w| 久久久久久99精品一区| 国产精品久久久久久人妻精品| 天天想你在线视频免费观看高清版| 亚洲av无码乱码在线观看裸奔| 久久水蜜桃亚洲av无码精品| 热99re久久免费视频| 色噜噜日韩精品一区一二区 | 国产精品美腿一区在线看| 亚洲精品午夜福利在线观看| 亚洲日韩精品久久玖玖玖| 青苹果乐园影院在线播放| 精品一区| 久久亚洲国产成人精品无码区| 1769国产精品短视频| 国产99久久九九精品无码| 免费看av网站在线亚洲| igao视频网在线观看| 日韩人妻无码精品无码中文字幕| 蜜桃精产品一区一区三区| 精品无码乱码av| 日本无码视频在线观看| 国产毛片久久久久久精品| 亚洲av成人av一区二区| 色男人天堂亚洲男人天堂| 亚洲国产欧美在线人成| 白丝袜国产在线观看91| 囯产精品一品二区三区| 欧美国产偷国产精品三区| 亚洲欧洲一区二区综合精品| 国产午夜在线精品三级a| 亚洲精品午夜电影在线观看| 伊人久久久久久久久香港| 啊啊啊操我在线观看免费| 东京热一区二区三区无码| 白天躁晚上躁天天躁| 久久久久国产精品免费看| 天天操天天干| 无码人妻精品区二区三区| 玖玖资源站免费在线观看| 一区二区三区国产精区别|